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Directed graphs

o Vertices V = {1, ...,n}
o Edges € =1{(i,j):i,j €V} SV XV (directed)
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Undirected graphs

o Vertices V = {1, ...,n}
o Edges € =1{(i,j):i,j €V} SV XV (directed)
o Edges &€ ={{i,j}:i,j € V} €V XV (undirected)
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Graph neighborhood

o The neighborhood of a node is all nodes directly connected to it
N@G@) =y:G)) &)
o The degree of the node is the number of neighbors: d; = |V (i)]
° The diagonal matrix D contains all degrees per node
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Attributes

o Node features x: V - R%, X = (x¢, ..., X,,)

o Edge features e;;: £ » R?
- If d’ € R we simply have a weighted graph
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Adjacency matrix

o An n X n matrix 4, for n nodes

Lo _[1ifGDE e
AU T 0ifG) ¢ £
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Adjacency matrix for undirected graphs

o The adjacency matrix is symmetric for undirected graphs
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Weighted adjacency matrix

o When the edges have weights, so does the adjacency matrix
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Graph Laplacian

o A matrix representation of a graph: A =D — A

o Normalize to cancel out skewing by the degree matrix
A=D"Y(D—A)=1—-D"14

o Or for better symmetry
A=D"Y2(D—-A)D Y2 =]—-DV2AD"Y/?
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Local difference operator

o The local difference operator

1
(Ax); = T z wii (x; — xj)

L. )
JEN (i)
o A bit similar to a convolution
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Dirichlet energy

o Measures the smoothness of the signal in the graph
1
E(X) = Zd_ z wy |[x; — xj”2 = trace(XAX")
i€V ' jEN(D)
o The bigger differences (x;—x;) between all possible neighbors

> The bigger the ‘energy’ in our graph
> The less smooth the graph is

li.%l UNIVERSITY OF AMSTERDAM EFSTRATIOS GAVVES - UVA DEEP LEARNING COURSE - 11 VISLab




