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o Vertices 𝒱 = 1,… , 𝑛

o Edges ℰ = 𝑖, 𝑗 : 𝑖, 𝑗 ∈ 𝒱 ⊆ 𝒱 × 𝒱 (directed)

Directed graphs



UVA DEEP LEARNING COURSE – EFSTRATIOS GAVVES                                                                                    DEEPER INTO DEEP 
LEARNING AND OPTIMIZATIONS - 3

EFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 3 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – ‹#› VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 3 VISLabEFSTRATIOS GAVVES – UVA DEEP LEARNING COURSE – 3 VISLab

o Vertices 𝒱 = 1,… , 𝑛

o Edges ℰ = 𝑖, 𝑗 : 𝑖, 𝑗 ∈ 𝒱 ⊆ 𝒱 × 𝒱 (directed)

o Edges ℰ = {𝑖, 𝑗}: 𝑖, 𝑗 ∈ 𝒱 ⊆ 𝒱 × 𝒱 (undirected)

Undirected graphs
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o The neighborhood of a node is all nodes directly connected to it

𝒩 𝑖 = 𝑗: 𝑖, 𝑗 ∈ ℰ

o The degree of the node is the number of neighbors: 𝑑𝑖 = |𝒩 𝑖 |
◦ The diagonal matrix 𝐷 contains all degrees per node

Graph neighborhood
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o Node features 𝒙: 𝒱 → ℝ𝑑, 𝑋 = (𝒙1, … , 𝒙𝑛)

o Edge features 𝒆𝑖𝑗: ℰ → ℝ𝑑′

◦ If 𝑑′ ∈ ℝ we simply have a weighted graph

Attributes

𝑥𝑖

𝑥𝑗𝑒𝑖𝑗
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o An 𝑛 × 𝑛 matrix 𝐴, for 𝑛 nodes

o 𝐴𝑖𝑗 = ቊ
1 if i, j ∈ ℰ

0 if i, j ∉ ℰ

Adjacency matrix
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𝑘

𝑙
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o The adjacency matrix is symmetric for undirected graphs

Adjacency matrix for undirected graphs
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o When the edges have weights, so does the adjacency matrix

Weighted adjacency matrix

𝑖

𝑗

𝑘

𝑙

𝑖 𝑗 𝑘 𝑙

𝑖

𝑗

𝑘

𝑙

𝑚
𝑚
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𝑤𝑘𝑖

𝑤𝑚𝑖

𝑤𝑖𝑗 𝑤𝑖𝑗

𝑤𝑚𝑗
𝑤𝑖𝑘 , 𝑤𝑘𝑖

0

0
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o A matrix representation of a graph: Δ = 𝐷 − 𝐴

o Normalize to cancel out skewing by the degree matrix

Δ = 𝐷−1 𝐷 − 𝐴 = 𝐼 − 𝐷−1𝐴

o Or for better symmetry

Δ = 𝐷−1/2 𝐷 − 𝐴 𝐷−1/2 = 𝐼 − 𝐷−1/2𝐴𝐷−1/2

Graph Laplacian

𝑥𝑖

𝑥𝑗𝑤𝑖𝑗
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o The local difference operator

Δ𝒙 𝒊 =
1

𝑑𝑖
෍

𝑗∈𝒩 𝑖

𝑤𝑖𝑗 (𝒙𝑖 − 𝒙𝑗)

o A bit similar to a convolution

Local difference operator

𝑥𝑖

𝑥𝑗𝑤𝑖𝑗
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o Measures the smoothness of the signal in the graph

𝐸 𝑋 =෍

𝑖∈𝒱

1

𝑑𝑖
෍

𝑗∈𝒩 𝑖

𝑤𝑖𝑗 𝑥𝑖 − 𝑥𝑗
2
= trace(𝚾𝚫𝚾Τ)

o The bigger differences (𝑥𝑖−𝑥𝑗) between all possible neighbors

◦ The bigger the ‘energy’ in our graph

◦ The less smooth the graph is

Dirichlet energy

𝑥𝑖

𝑥𝑗𝑤𝑖𝑗


