Revisiting graphs

Labelled graph	Degree matrix	Adjacency matrix	Laplacian matrix
6 4 5 1	$\begin{pmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$

Directed graphs

- Vertices $\mathcal{V} = \{1, ..., n\}$
- ∘ Edges $\mathcal{E} = \{(i,j): i,j \in \mathcal{V}\} \subseteq \mathcal{V} \times \mathcal{V}$ (directed)

Undirected graphs

- Vertices $\mathcal{V} = \{1, ..., n\}$
- o Edges $\mathcal{E} = \{(i,j): i,j \in \mathcal{V}\}$ ⊆ $\mathcal{V} \times \mathcal{V}$ (directed)
- ∘ Edges $\mathcal{E} = \{\{i, j\}: i, j \in \mathcal{V}\} \subseteq \mathcal{V} \times \mathcal{V}$ (undirected)

Graph neighborhood

• The neighborhood of a node is all nodes directly connected to it $\mathcal{N}(i) = \{j: (i, j) \in \mathcal{E}\}$

• The degree of the node is the number of neighbors: $d_i = |\mathcal{N}(i)|$

• The diagonal matrix *D* contains all degrees per node

Attributes

- o Node features $x: \mathcal{V} \to \mathbb{R}^d, X = (x_1, ..., x_n)$
- Edge features $e_{ij}: \mathcal{E} \to \mathbb{R}^{d'}$
 - If $d' \in \mathbb{R}$ we simply have a weighted graph

Adjacency matrix

 \circ An $n \times n$ matrix A, for n nodes

$$A_{ij} = \begin{cases} 1 \text{ if } (i,j) \in \mathcal{E} \\ 0 \text{ if } (i,j) \notin \mathcal{E} \end{cases}$$

Adjacency matrix for undirected graphs

The adjacency matrix is symmetric for undirected graphs

Weighted adjacency matrix

When the edges have weights, so does the adjacency matrix

Graph Laplacian

- A matrix representation of a graph: $\Delta = D A$
- Normalize to cancel out skewing by the degree matrix

$$\Delta = D^{-1}(D - A) = I - D^{-1}A$$

Or for better symmetry

$$\Delta = D^{-1/2}(D - A)D^{-1/2} = I - D^{-1/2}AD^{-1/2}$$

Labelled graph	Degree matrix	Adjacency matrix Laplacian matrix
6 4 3 2	$\begin{pmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$

Local difference operator

The local difference operator

$$(\Delta \mathbf{x})_{i} = \frac{1}{d_{i}} \sum_{j \in \mathcal{N}(i)} w_{ij} (\mathbf{x}_{i} - \mathbf{x}_{j})$$

A bit similar to a convolution

Labelled graph	Degree matrix	Adjacency matrix	Laplacian matrix
6 4 5 1 3-2	$\begin{pmatrix} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{pmatrix}$	$\begin{pmatrix} 2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1 \end{pmatrix}$

Dirichlet energy

Measures the smoothness of the signal in the graph

$$E(X) = \sum_{i \in \mathcal{V}} \frac{1}{d_i} \sum_{j \in \mathcal{N}(i)} w_{ij} \|x_i - x_j\|^2 = \operatorname{trace}(\mathbf{X} \Delta \mathbf{X}^{\mathrm{T}})$$

- The bigger differences (x_i-x_j) between all possible neighbors
 - The bigger the 'energy' in our graph
 - The less smooth the graph is

